A Discrete - State Spiking Neuron Model and its Learning Potential
نویسنده
چکیده
In this paper we review some of our recent results on discrete-state spiking neuron models. The discrete-state spiking neuron model is a wired system of shift registers and can generate various spike-trains by adjusting the pattern of the wirings. In this paper we show basic relations between the wiring pattern and characteristics of the spike-train. We also show a learning algorithm which utilizes successive changes of the wiring pattern. It is shown that the learning algorithm enables the neuron to approximate various spike-trains generated by a chaotic analog spiking neuron. §
منابع مشابه
Title A Discrete - State Spiking Neuron Model and its
In this paper we review some of our recent results on discrete-state spiking neuron models. The discrete-state spiking neuron model is a wired system of shift registers and can generate various spike-trains by adjusting the pattern of the wirings. In this paper we show basic relations between the wiring pattern and characteristics of the spike-train. We also show a learning algorithm which util...
متن کاملTemporal sequence detection with spiking neurons: towards recognizing robot language instructions
We present an approach for recognition and clustering of spatio temporal patterns based on networks of spiking neurons with active dendrites and dynamic synapses. We introduce a new model of an integrate-andfire neuron with active dendrites and dynamic synapses (ADDS) and its synaptic plasticity rule. The neuron employs the dynamics of the synapses and the active properties of the dendrites as ...
متن کاملHardware Optimization of a Novel Spiking Neuron Model for the POEtic Tissue
In this paper we describe the hardware implementation of a spiking neuron model, which uses a spike time dependent synaptic (STDS) plasticity rule that allows synaptic changes by discrete time steps. For this purpose it is used an integrate-and-fire neuron with recurrent local connections. The connectivity of this model has been set to 24-neighbour, so there is a high degree of parallelism. Aft...
متن کاملSupervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks
Artificial neural networks are learning paradigms which mimic the biological neu ral system. The temporal coding Spiking Neural Network, a relatively new artifi cial neural network paradigm, is considered to be computationally more powerful than the conventional neural network. Research on the network of spiking neurons is an emerging field and has potential for wider investigation. This rese...
متن کاملDigital spiking neuron and its learning for approximation of various spike-trains
A digital spiking neuron is a wired system of shift registers and can generate various spike-trains by adjusting the wiring pattern. In this paper we analyze the basic relations between the wiring pattern and characteristics of the spike-train. Based on the relations, we present a learning algorithm which utilizes successive changes of the wiring pattern. It is shown that the neuron can reprodu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009